Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301652, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659342

RESUMO

Atomically dispersed Co-N4-based catalysts have been recently emerging as one of the most promising candidates for facilitating CO2 reduction reaction (CO2RR). The local electronic environment of Co-N4 sites in these catalysts is considered to play a critical role in adjusting the catalytic performance, the effort of which however is not yet clearly verified. Herein, a series of cobalt phthalocyanines with different peripheral substituents including unsubstituted phthalocyanine Co(II) (CoPc), 2,9,16,23-tetramethoxyphthalocyaninato Co(II) (CoPc-4OCH3), and 2,9,16,23-tetranitrophthalocyaninato Co(II) (CoPc-4NO2) are supported onto the surface of the multi-walled carbon nanotubes (CNTs), affording CoPc@CNTs, CoPc-4OCH3@CNTs, and CoPc-4NO2@CNTs. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure measurements disclose the influence of the peripheral substituents on the local electronic structure of Co atoms in these three catalysts. Electrochemical tests indicate the higher CO2RR performance of CoPc-4OCH3@CNTs compared to CoPc@CNTs and CoPc-4NO2@CNTs as exemplified by the higher Faraday efficiency of CO, larger part current densities, and better stability displayed by CoPc-4OCH3@CNTs at the applied voltage range from -0.6 to -1.0 V versus RHE in both H-cell and flow cell. These results highlight the effect of the electron-donating -OCH3 substituent on the enhanced catalytic activity of CoPc-4OCH3@CNTs, which will help develop Co-N4-based catalysts with promising catalytic performance toward CO2RR.

2.
Angew Chem Int Ed Engl ; : e202404156, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619506

RESUMO

The synthesis and characterization of porphyrin center regulated three-dimensional covalent organic frameworks with 2-fold interpenetrated scu or sqc topology have been investigated. These COFs exhibit unique structural features and properties, making them promising candidates for photocatalytic applications in CO2 reduction and artemisinin synthesis. The porphyrin center serves as an anchor for metal ions, allowing precise control over structures and functions of the frameworks. Furthermore, the metal coordination within the framework imparts desirable catalytic properties, enabling their potential use in photocatalytic reactions. Overall, these porphyrin center regulated metal-controlled COFs offer exciting opportunities for the development of advanced materials with tailored functionalities.

3.
Inorg Chem ; 63(10): 4691-4696, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38394615

RESUMO

In this study, four isostructural pillar-layered frameworks were constructed using a porphyrin layer and an anthracene pillar, which served as the sensitizer and annihilator, respectively, in the triplet-triplet annihilation upconversion (TTA-UC) system. Framework 1 demonstrated the highest upconversion quantum yield of 1.01%. Additionally, 1 and 2 also exhibited down-conversion fluorescence resulting from the porphyrin component. A twist intramolecular charge transfer (TICT) state was observed in the bianthracene chromophore of 2, resulting in transient rotation of two anthracene rings and red-shifted emission. Both computational studies and experiments confirmed the transition from a locally excited state to a TICT state upon the inclusion of polar guest molecules into the framework.

4.
Angew Chem Int Ed Engl ; 63(15): e202401014, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38334002

RESUMO

Developing high connectivity (>8) three-dimensional (3D) covalent organic frameworks (COFs) towards new topologies and functions remains a great challenge owing to the difficulty in getting high connectivity organic building blocks. This however represents the most important step towards promoting the diversity of COFs due to the still limited dynamic covalent bonds available for constructing COFs at this stage. Herein, highly connected phthalocyanine-based (Pc-based) 3D COFs MPc-THHI-COFs (M=H2, Ni) were afforded from the reaction between 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine M(TAPc) (M=H2, Ni) and 5,5',5'',5''',5'''',5'''''-(triphenylene-2,3,6,7,10,11-hexayl)hexa(isophthalohydrazide) (THHI) with 12 connecting sites. Powder X-ray diffraction analysis together with theoretical simulations and transmission electron microscopy reveals their crystalline nature with an unprecedented non-interpenetrated shp topology. Experimental and theoretical investigations disclose the broadened visible light absorption range and narrow optical band gap of MPc-THHI-COFs. This in combination with their 3D nanochannels endows them with efficient photocatalysis performance for H2O2 generation from O2 and H2O via 2e- oxygen reduction reaction and 2e- water oxidation reaction under visible-light irradiation (λ >400 nm). This work provides valuable result for the development of high connectivity functional COFs towards diverse application potentials.

5.
Small ; : e2310147, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377273

RESUMO

Fabricating COFs-based electrocatalysts with high stability and conductivity still remains a great challenge. Herein, 2D polyimide-linked phthalocyanine COF (denoted as NiPc-OH-COF) is constructed via solvothermal reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(II) and 2,5-diamino-1,4-benzenediol (DB) with other two analogous 2D COFs (denoted as NiPc-OMe-COF and NiPc-H-COF) synthesized for reference. In comparison with NiPc-OMe-COF and NiPc-H-COF, NiPc-OH-COF exhibits enhanced stability, particularly in strong NaOH solvent and high conductivity of 1.5 × 10-3  S m-1 due to the incorporation of additional strong interlayer hydrogen bonding interaction between the O-H of DB and the hydroxy "O" atom of DB in adjacent layers. This in turn endows the NiPc-OH-COF electrode with ultrahigh CO2 -to-CO faradaic efficiency (almost 100%) in a wide potential range from -0.7 to -1.1 V versus reversible hydrogen electrode (RHE), a large partial CO current density of -39.2 mA cm-2 at -1.1 V versus RHE, and high turnover number as well as turnover frequency, amounting to 45 000 and 0.76 S-1 at -0.80 V versus RHE during 12 h lasting measurement.

6.
ACS Appl Mater Interfaces ; 16(4): 4741-4750, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38239127

RESUMO

Covalent organic frameworks (COFs) are notable for their remarkable structure, function designability, and tailorability, as well as stability, and the introduction of "open metal sites" ensures the efficient binding of small molecules and activation of substrates for heterogeneous catalysis and energy storage. Herein, we use the postsynthetic metal sites to catalyze polysulfide conversion and to boost the binding affinity to active matter for lithium-sulfur batteries (LSBs). A dual-pore COF, USTB-27, with hxl topology has been successfully assembled from the imine chemical reaction between 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and [2,2'-bipyridine]-5,5'-diamine. The chelating nitrogen sites of both modules are able to postsynthetically functionalize with single cobalt sites to generate USTB-27-Co. The discharge capacity of the sulfur-loaded S@USTB-27-Co composite in a LSB is 1063, 945, 836, 765, 696, and 644 mA h g-1 at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C, respectively, much superior to that of non-cobalt-functionalized species S@USTB-27. Following the increased current densities, the rate performance of S@USTB-27-Co is much better than that of S@USTB-27. In particular, the capacity retention at 5.0 C has a magnificent increase from 19% for the latter species to 61% for the former one. Moreover, S@USTB-27-Co exhibits a higher specific capacity of 543 mA h g-1 than that of S@USTB-27 (402 mA h g-1) at a current density of 1.0 C after electrochemical cycling for 500 runs. This work illustrates the "open metal sites" strategy to engineer the active chemical component conversion in COF channels as well as their binding strength for specific applications.

7.
Nat Commun ; 15(1): 678, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263147

RESUMO

Realization of stable and industrial-level H2O2 electroproduction still faces great challenge due large partly to the easy decomposition of H2O2. Herein, a two-dimensional dithiine-linked phthalocyaninato cobalt (CoPc)-based covalent organic framework (COF), CoPc-S-COF, was afforded from the reaction of hexadecafluorophthalocyaninato cobalt (II) with 1,2,4,5-benzenetetrathiol. Introduction of the sulfur atoms with large atomic radius and two lone-pairs of electrons in the C-S-C linking unit leads to an undulated layered structure and an increased electron density of the Co center for CoPc-S-COF according to a series of experiments in combination with theoretical calculations. The former structural effect allows the exposition of more Co sites to enhance the COF catalytic performance, while the latter electronic effect activates the 2e- oxygen reduction reaction (2e- ORR) but deactivates the H2O2 decomposition capability of the same Co center, as a total result enabling CoPc-S-COF to display good electrocatalytic H2O2 production performance with a remarkable H2O2 selectivity of >95% and a stable H2O2 production with a concentration of 0.48 wt% under a high current density of 125 mA cm-2 at an applied potential of ca. 0.67 V versus RHE for 20 h in a flow cell, representing the thus far reported best H2O2 synthesis COFs electrocatalysts.

8.
Adv Mater ; 36(5): e2311023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050947

RESUMO

Electrocatalytic synthesis of amino acids provides a promising green and efficient pathway to manufacture the basic substances of life. Herein, reaction of 2,5-perfluroalkyl-terepthalohydrazide and tris(4-µ2 -O-carboxaldehyde-pyrazolato-N, N')-tricopper affords a crystalline trinuclear copper cluster-containing organic framework, named F-Cu3 -OF. Incorporation of abundant hydrophobic perfluroalkyl groups inside the channels of F-Cu3 -OF is revealed to successfully suppress the hydrogen evolution reaction via preventing H+ cation with large polarity from the framework of F-Cu3 -OF and in turn increasing the adsorption of other substrates with relatively small polarity like NO3 - and keto acids on the active sites. The copper atoms with short distance in the trinuclear copper clusters of F-Cu3 -OF enable simultaneous activization of NO3 - and keto acids, facilitating the following synergistic and efficient C─N coupling on the basis of in situ spectroscopic investigations together with theoretical calculation. Combination of these effects leads to efficient electroproduction of various amino acids including glycine, alanine, leucine, valine, and phenylalanine from NO3 - and keto acids with a Faraday efficiency of 42%-71% and a yield of 187-957 µmol cm-2 h-1 , representing the thus far best performance. This work shall be helpful for developing economical, eco-friendly, and high-efficiency strategy for the production of amino acids and other life substances.

9.
Nat Chem ; 16(1): 114-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37723258

RESUMO

Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10-6 K-1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10-2 S cm-1.

10.
J Am Chem Soc ; 145(46): 25332-25340, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944150

RESUMO

Rational control and understanding of isomerism are of significance but still remain a great challenge in reticular frameworks, in particular, for covalent organic frameworks (COFs) due to the complicated synthesis and energy factors. Herein, reaction of 3,3',5,5'-tetra(4-formylphenyl)-2,2',6,6'-tetramethoxy-1,1'-biphenyl (TFTB) with 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) under different reaction conditions affords single crystals of two 3D COF isomers, namely, USTB-20-dia and USTB-20-qtz. Their structures with resolutions up to 0.9-1.1 Å have been directly solved by three-dimensional electron diffraction (3D ED) and synchrotron single crystal X-ray diffraction, respectively. USTB-20-dia and USTB-20-qtz show rare 2 × 2-fold interpenetrated dia-b nets and 3-fold interpenetrated qtz-b frameworks. Comparative studies of the crystal structures of these COFs and theoretical simulation results indicate the crucial role of the flexible molecular configurations of building blocks in the present interpenetrated topology isomerism. This work not only presents the rare COF isomers but also gains an understanding of the formation of framework isomerism from both single crystal structures and theoretical simulation perspectives.

11.
Small ; : e2307743, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009525

RESUMO

Herein, a series of imine-linked covalent organic frameworks (COFs) are developed with advanced ordered mesoporous hollow spherical nanomorphology and ultra-large mesopores (4.6 nm in size), named OMHS-COF-M (M = H, Co, and Ni). The ordered mesoporous hollow spherical nanomorphology is revealed to be formed via an Ostwald ripening mechanism based on a one-step self-templated strategy. Encouraged by its unique structural features and outstanding photoelectrical property, the OMHS-COF-Co material is applied as the photocatalyst for CO2 -to-CO reduction. Remarkably, it delivers an impressive CO production rate as high as 15 874 µmol g-1 h-1 , a large selectivity of 92.4%, and a preeminent cycling stability. From in/ex situ experiments and density functional theory (DFT) calculations, the excellent CO2 photoreduction performance is ascribed to the desirable cooperation of unique ordered mesoporous hollow spherical host and abundant isolated Co active sites, enhancing CO2 activation, and improving electron transfer kinetics as well as reducing the energy barriers for intermediates *COOH generation and CO desorption.

12.
Chem Sci ; 14(34): 9086-9094, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655043

RESUMO

Herein, we introduce a comprehensive study of the photophysical behaviors and CO2 reduction electrocatalytic properties of a series of cofacial porphyrin organic cages (CPOC-M, M = H2, Co(ii), Ni(ii), Cu(ii), Zn(ii)), which are constructed by the covalent-bonded self-assembly of 5,10,15,20-tetrakis(4-formylphenyl)porphyrin (TFPP) and chiral (2-aminocyclohexyl)-1,4,5,8-naphthalenetetraformyl diimide (ANDI), followed by post-synthetic metalation. Electronic coupling between the TFPP donor and naphthalene-1,4 : 5,8-bis(dicarboximide) (NDI) acceptor in the metal-free cage is revealed to be very weak by UV-vis spectroscopic, electrochemical, and theoretical investigations. Photoexcitation of CPOC-H2, as well as its post-synthetic Zn and Co counterparts, leads to fast energy transfer from the triplet state porphyrin to the NDI unit according to the femtosecond transient absorption spectroscopic results. In addition, CPOC-Co enables much better electrocatalytic activity for CO2 reduction reaction than the other metallic CPOC-M (M = Ni(ii), Cu(ii), Zn(ii)) and monomeric porphyrin cobalt compartment, supplying a partial current density of 18.0 mA cm-2 at -0.90 V with 90% faradaic efficiency of CO.

13.
Angew Chem Int Ed Engl ; 62(33): e202305144, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37341154

RESUMO

Utilization of rigid, highly connected organic linkers is critical for the reticular synthesis of functional metal-organic frameworks (MOFs). However, highly-stable MOFs (e.g. Al/Cr/Zr-based MOFs) based on rigid ligands with more than 6 coordinating functions have been rarely achieved thus far. Herein, we describe the construction of two bcu Zr-based MOFs (named ZrMOF-1 and ZrMOF-2) from peripherally extended pentiptycene ligands (H8 PEP-1 and H8 PEP-2) with rigid quadrangular prism shape possessing 8 carboxylic groups at the prism vertices. Particularly, ZrMOF-1 exhibits microporous structure with large Bruno-Emmett-Teller surface area and high water stability, endowing it a promising water harvesting material with a high water uptake capacity of 0.83 gH2O gMOF -1 at P/P0 =0.90 and 25 °C, a steep uptake at a low P/P0 of 0.30, and excellent durability over 500 water adsorption-desorption cycles. Moreover, self-consistent charge density functional tight-binding calculations were carried out, rationalizing the water adsorbing process and amount in ZrMOF-1.

14.
J Am Chem Soc ; 145(14): 8141-8149, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989190

RESUMO

Lithium-sulfur batteries (LSBs) have been considered as a promising candidate for next-generation energy storage devices, which however still suffer from the shuttle effect of the intermediate lithium polysulfides (LiPSs). Covalent-organic frameworks (COFs) have exhibited great potential as sulfur hosts for LSBs to solve such a problem. Herein, a pentiptycene-based D2h symmetrical octatopic polyaldehyde, 6,13-dimethoxy-2,3,9,10,18,19,24,25-octa(4'-formylphenyl)pentiptycene (DMOPTP), was prepared and utilized as a building block toward preparing COFs. Condensation of DMOPTP with 4-connected tetrakis(4-aminophenyl)methane affords an expanded [8 + 4] connected network 3D-flu-COF, with a flu topology. The non-interpenetrated nature of the flu topology endows 3D-flu-COF with a high Brunauer-Emmett-Teller surface area of 2860 m2 g-1, large octahedral cavities, and cross-linked tunnels in the framework, enabling a high loading capacity of sulfur (∼70 wt %), strong LiPS adsorption capability, and facile ion diffusion. Remarkably, when used as a sulfur host for LSBs, 3D-flu-COF delivers a high capacity of 1249 mA h g-1 at 0.2 C (1.0 C = 1675 mA g-1), outstanding rate capability (764 mA h g-1 at 5.0 C), and excellent stability, representing one of the best results among the thus far reported COF-based sulfur host materials for LSBs and being competitive with the state-of-the-art inorganic host materials.

15.
Angew Chem Int Ed Engl ; 62(18): e202302808, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36890114

RESUMO

Rational regulation of electronic structures and functionalities of framework materials still remains challenging. Herein, reaction of 4,4',4''-nitrilo-tribenzhydrazide with tris(µ2 -4-carboxaldehyde-pyrazolato-N,N')-tricopper (Cu3 Py3 ) generates the crystalline copper organic framework USTB-11(Cu). Post-modification with divalent nickel ions affords the heterometallic framework USTB-11(Cu,Ni). Powder X-ray diffraction and theoretical simulations reveal their two-dimensional hexagonal structure geometry. A series of advanced spectroscopic techniques disclose the mixed CuI /CuII state nature of Cu3 Py3 in USTB-11(Cu,Ni) with a uniform bistable Cu3 4+ (CuI 2 CuII ) : Cu3 5+ (CuI CuII 2 ) (ca. 1 : 3) oxidation state, resulting in a significantly improved formation efficiency of the charge-separation state. This endows the Ni sites with enhanced activity and USTB-11(Cu,Ni) with outstanding photocatalytic CO2 to CO performance with a conversion rate of 22 130 µmol g-1 h-1 and selectivity of 98 %.

16.
Angew Chem Int Ed Engl ; 62(7): e202217195, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36542446

RESUMO

Thermally activated delayed fluorescence (TADF) from linear two-coordinate coinage metal complexes is sensitive to the geometric arrangement of the ligands. Herein we realize the tuning of configuration from coplanar to orthogonal gradually by variation of substituents. In a complex with confined twist configuration, its blue emission peaking at 458 nm presents a high ΦPL of 0.74 and a short τTADF of 1.9 µs, which indicates a fast enough kr,TADF of 3.9×105  s-1 and a depressed knr of 1.4×105  s-1 . Such outstanding luminescent properties are attributed to the proper overlap of HOMO and LUMO on CuI d orbitals that guarantees not only small ΔEST but also sufficient transition oscillator strength for fast k r , S 1 ${{k}_{{\rm r},{{\rm S}}_{1}}}$ . Vacuum-deposited blue OLEDs with either doped or host-free emissive layer present external quantum efficiencies over 20 % and 10 %, respectively, demonstrating the practicality of the configurationally confined strategy for efficient linear CuI TADF emitters.

17.
J Colloid Interface Sci ; 632(Pt A): 171-178, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36413943

RESUMO

This research developed a signal amplification strategy to construct a highly sensitive electrochemiluminescent (ECL) aptasensor by incorporating dysprosium metal-organic framework (Dy-MOF) as a co-reaction accelerator (CRA) in gadolinium (Gd) luminescent complex based ECL system. A new Gd(III) complex GdPc(acac) (Pc = phthalocyanine, acac = acetylacetonate) with semi-sandwich structure was rationally selected as ECL emitter, exhibiting excellent luminescence performance owing to the "antenna effect" from the conjugated macrocyclic ligand. For further improving the sensitivity of the ECL biosensor, Dy-MOF was introduced into the ECL system as CRA. The purposive design and configuration of the Dy-MOF structure accelerated the separation and transport of photogenerated charges, and the nanosheets formed by the composite material provided more active sites, which could not only greatly increased the luminophore loading, but also effectively shorten the transport distance of ions and co-reactants. The constructed biosensor showed superior performance to monitor kanamycin within 0.001 pg/mL-1000 ng/mL and a detection limit down to 0.3 fg/mL (S/N = 3). The current work opened up a skillful strategy to amplify ECL singnal, extending the application field of lanthanide complexes and providing valuable information for the future biosensor design.


Assuntos
Disprósio , Estruturas Metalorgânicas , Canamicina , Gadolínio , Indóis
18.
J Am Chem Soc ; 144(46): 21328-21336, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350764

RESUMO

Artificial photosynthesis of H2O2 from O2 reduction provides an energy-saving, safe, and green approach. However, it is still critical to develop highly active and selective 2e- oxygen reduction reaction photocatalysts for efficient H2O2 production owing to the unsatisfactory photosynthesis productivity. Herein, two new two-dimensional piperazine-linked CoPc-based covalent organic frameworks (COFs), namely, CoPc-BTM-COF and CoPc-DAB-COF, were afforded from the nucleophilic substitution reaction of hexadecafluorophthalocyaninato cobalt(II) (CoPcF16) with 1,2,4,5-benzenetetramine (BTM) or 3,3'-diaminobenzidine (DAB). Powder X-ray diffraction analysis in combination with electron microscopy and a series of spectroscopic technologies reveals their crystalline porous framework with a fully conjugated structure and eclipsed π-stacking model. Ultraviolet-visible diffuse reflectance absorption spectra unveil their excellent light absorption capacity in a wide range of 400-1000 nm. This, together with their enhanced photo-induced charge separation and transport efficiency as disclosed by photocurrent response and photoluminescence measurements, endows the as-prepared piperazine-linked CoPc-based COFs with superior photocatalytic activity toward O2-to-H2O2 conversion under visible-light irradiation (λ > 400 nm). In particular, CoPc-BTM-COF exhibits a record-high H2O2 yield of 2096 µmol h-1 g-1 among the COF-based photocatalysts and an impressive apparent quantum yield of 7.2% at 630 nm. The present result should be helpful for fabricating high-performance and low-cost photocatalysts for visible-light-driven H2O2 photosynthesis.


Assuntos
Peróxido de Hidrogênio , Luz , Piperazina , Fotossíntese
19.
Adv Mater ; 34(50): e2207245, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189855

RESUMO

Fully aromatic conjugated covalent organic frameworks (FAC-COFs) with excellent physicochemical stability have been emerging as active semiconductors for diverse potential applications. Developing efficient synthesis methods for fabricating FAC-COFs will significantly facilitate the exploration over their material and photonic/electronic functionalities. Herein, a facile solvent-free strategy is developed for the synthesis of 2D phthalocyanine-based FAC-COFs (FAC-Pc-COFs). Cyclopolymerization of benzo[1,2-b:4,5-b']bis[1,4]benzodioxin-2,3,9,10-tetracarbonitrile (BBTC) and quinoxalino[2',3':9,10]phenanthro[4,5-abc]phenazine-6,7,15,16-tetracarbonitrile (QPPTC) in ZnCl2  leads to the fast formation and isolation of BB-FAC-Pc-COF and QPP-FAC-Pc-COF, respectively. Powder X-ray diffraction and electron microscopy analysis reveal their crystalline nature with sql topology and AA stacking configuration. Thermogravimetric analysis and immersion experiment indicate their excellent stability. The conductivity test demonstrates their high conductivity of 0.93-1.94 × 10-4  S cm-1  owing to the fully π-conjugated electronic structural nature. In particular, the as-prepared FAC-Pc-COFs show high-performance K+ storage in potassium-ion batteries due to their excellent conductivity, highly ordered and robust structure, and N/O-rich framework nature. Impressively, QPP-FAC-Pc-COF shows a large reversible capacity of 424 mA h g-1  after 100 cycles at 50 mA g-1  and a capacity retention of nearly 100% at 2000 mA g-1  for over 10 000 cycles.

20.
Chem Soc Rev ; 51(22): 9262-9339, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36315281

RESUMO

The unique properties of natural tetrapyrrolic compounds have inspired the rapid growth of research interest in the design and synthesis of artificial porphyrinoids and their metal complexes as a basis of modern functional materials. A special role in the design of such materials is played by sandwich complexes formed by tetrapyrrolic macrocycles with rare earth elements, especially lanthanides. The development of synthetic approaches to the functionalization of tetrapyrrolic compounds and their rare earth complexes has facilitated the intensive development of new applications over the last decade. As a way of expanding the functionalities of rare earth complexes, sophisticated examples have been obtained, including mixed-ligand complexes, π-extended analogues, covalently linked and fused sandwiches, complexes with less-common tetrapyrrols, sandwiches with non-tetrapyrrolic macrocycles and even complexes containing up to six stacked ligands. This review intends to offer a general overview of the preparation of such sophisticated REE tetrapyrrolic sandwiches over the last decade as well as emphasizes the current challenges and perspectives of their application in areas such as single-molecule magnetism (SMM), organic field-effect transistors (OFET), conductive materials and nonlinear optics (NLO).


Assuntos
Complexos de Coordenação , Elementos da Série dos Lantanídeos , Metais Terras Raras , Complexos de Coordenação/química , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...